Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
उत्तर
LHS = `(1 - tan^2 θ)/(cot^2 θ - 1)`
= `(1 - tan^2 θ)/(1/tan^2 θ - 1)`
= `((1 - tan^2 θ)/(1 - tan^2 θ)/tan^2 θ) `
= tan2 θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.