Advertisements
Advertisements
प्रश्न
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
उत्तर १
`[x/a cos theta + y/b sin theta]^2 + [x/a sin theta - y/b cos theta] = (1)^2 + (1)^2`
`x^2/a^2 cos^2 theta + y^2/b^2 sin^2 theta (2xy)/(ab) cos theta sin theta = x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - (2xy)/(ab) sin theta cos theta = 1 + 1`
`x^2/a^2 cos^2 theta + y^2/b^2 cos^2 theta + y^2/b^2 sin^2 theta = 2`
`cos^ theta [x^2/a^2 + y^2/b^2] + sin^2 theta(x^2/a^2 + y^2/a^2) = 2`
`x^2/a^2 + y^2/b^2` = (∴ `cos^2 theta + sin^2 theta = 1`)
उत्तर २
It is given that:
`x/a cos θ + y/b sin θ = 1` ....(A)
and `x/a sin θ - y/b cos θ = 1` ....(B)
On squaring equation (A), we get
`(x/a cos θ + y/b sin θ)^2 = (1)^2`
⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ = 1` ....(c)
On squaring equation (B), we get
= `(x/a sin θ - y/b cos θ )^2 = (1)^2`
⇒ `x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1` ....(D)
Adding (C) and (D), we get,
⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ + x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1 + 1`
⇒ `x^2/a^2 sin^2 θ + y^2/b^2cos^2 θ-(4xy)/"ab" sin^2 θ + cos^2 θ = 2`
⇒ `x^2/a^2 xx 1 + y^2/b^2 xx 1 = 2`
⇒ `x^2/a^2 + y^2/b^2 = 2`
Hence proved.
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If sin A = `1/2`, then the value of sec A is ______.