मराठी

If X/A Cos Theta + Y/B Sin Theta = 1 and X/A Sin Theta - Y/B Cos Theta = 1 Prove that X^2/A^2 + Y^2/B^2 = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`

बेरीज

उत्तर १

`[x/a cos theta + y/b sin theta]^2 + [x/a sin theta - y/b cos theta] = (1)^2 + (1)^2`

`x^2/a^2 cos^2 theta + y^2/b^2 sin^2 theta (2xy)/(ab) cos theta sin theta = x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - (2xy)/(ab) sin theta cos theta = 1 + 1`

`x^2/a^2  cos^2 theta + y^2/b^2 cos^2 theta  + y^2/b^2 sin^2  theta  = 2` 

`cos^ theta [x^2/a^2 + y^2/b^2] + sin^2 theta(x^2/a^2  + y^2/a^2) = 2`

`x^2/a^2 + y^2/b^2` = (∴ `cos^2 theta + sin^2 theta = 1`)

shaalaa.com

उत्तर २

It is given that:

`x/a cos θ + y/b sin θ = 1`     ....(A)

and `x/a sin θ - y/b cos θ = 1`    ....(B) 

On squaring equation (A), we get

`(x/a cos θ + y/b sin θ)^2 = (1)^2`

⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ = 1`     ....(c)

On squaring equation (B), we get

= `(x/a sin θ - y/b cos θ )^2 = (1)^2`

⇒ `x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1`  ....(D)

Adding (C) and (D), we get,

⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ + x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1 + 1`

⇒ `x^2/a^2 sin^2 θ  + y^2/b^2cos^2 θ-(4xy)/"ab" sin^2 θ + cos^2 θ = 2`

⇒ `x^2/a^2 xx 1 + y^2/b^2 xx 1 = 2`

⇒ `x^2/a^2 + y^2/b^2 = 2`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 67
आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 75 | पृष्ठ ४६

संबंधित प्रश्‍न

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×