मराठी

Tan θ Sec θ − 1 + Tan θ Sec θ + 1 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 

पर्याय

  • 0

  • 1

  • -1

  • 2

MCQ

उत्तर

The given expression is `cot θ/(cotθ-cot 3θ)+tanθ/(tanθ-tan3θ)`

Simplifying the given expression, we have

`cotθ/(cotθ-cot3θ)+ tanθ/(tanθ-tan3θ)` 

= `(cosθ/sin)/(cosθ/sinθ-(cos3θ)/(sin3θ))+(sinθ/cosθ)/(sinθ/sinθ-(sin3θ)/(cos3θ))`

=` (cosθ/sinθ)/((cosθsin 3θ-cos3θsinθ)/(sinθ sin3θ))+ (sin θ/cos θ)/((sinθ cos3θ-sin3θ cosθ)/(cosθ cos3θ))`

=` (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)+(sinθ cos3θ)/(sinθ cos3θ-sin3θ sinθ)`

=`(cosθ sin3θ)/(cosθsinθ-cos3θsinθ)+(cos3θ sinθ)/(-1(cosθ sin3θ-cos3θ sinθ))`  

`= (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)-(cos3θsinθ)/(cosθsin3θ-cos3θsinθ)` 

`=(cosθsin3θ-cos3θsinθ)/(cosθsin3θ-cos3θsinθ)` 

=1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 14 | पृष्ठ ५७

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×