Advertisements
Advertisements
प्रश्न
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
पर्याय
0
1
-1
2
उत्तर
The given expression is `cot θ/(cotθ-cot 3θ)+tanθ/(tanθ-tan3θ)`
Simplifying the given expression, we have
`cotθ/(cotθ-cot3θ)+ tanθ/(tanθ-tan3θ)`
= `(cosθ/sin)/(cosθ/sinθ-(cos3θ)/(sin3θ))+(sinθ/cosθ)/(sinθ/sinθ-(sin3θ)/(cos3θ))`
=` (cosθ/sinθ)/((cosθsin 3θ-cos3θsinθ)/(sinθ sin3θ))+ (sin θ/cos θ)/((sinθ cos3θ-sin3θ cosθ)/(cosθ cos3θ))`
=` (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)+(sinθ cos3θ)/(sinθ cos3θ-sin3θ sinθ)`
=`(cosθ sin3θ)/(cosθsinθ-cos3θsinθ)+(cos3θ sinθ)/(-1(cosθ sin3θ-cos3θ sinθ))`
`= (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)-(cos3θsinθ)/(cosθsin3θ-cos3θsinθ)`
`=(cosθsin3θ-cos3θsinθ)/(cosθsin3θ-cos3θsinθ)`
=1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.