मराठी

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or 12. - Mathematics

Advertisements
Advertisements

प्रश्न

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or 12.

बेरीज

उत्तर

Given: 1 + sin2 θ = 3 sin θ cos θ

Dividing L.H.S and R.H.S equations with sin2θ,

We get, 

1+sin2θsin2θ=3sinθcosθsin2θ

1sin2θ+1=3cosθsinθ

cosec2 θ + 1 = 3 cot θ

Since, cosec2 θ – cot2 θ = 1 

cosec2 θ = cot2 θ + 1

cot2 θ + 1 + 1 = 3 cot θ

cot2 θ + 2 = 3 cot θ

cot2 θ – 3 cot θ + 2 = 0

Splitting the middle term and then solving the equation,

cot2 θ – cot θ – 2 cot θ + 2 = 0

cot θ(cot θ – 1) – 2(cot θ + 1) = 0

(cot θ – 1)(cot θ – 2) = 0

cot θ = 1, 2

Since,

tan θ = 1cotθ

tan θ = 1,12

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 4 | पृष्ठ ९९

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

sinθ-2sin3θ2cosθ-cosθ=tanθ

 


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities

1+tan2θ1+cot2θ=(1-tanθ1-cotθ)2=tan2θ


Prove the following trigonometric identities.

[tanθ+1cosθ]2+[tanθ-1cosθ]2=2(1+sin2θ1-sin2θ)


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove the following identities:

1-cosAsinA+sinA1-cosA=2cosecA


(sec2θ-1)(cosec2θ-1)=1


1(1+tan2θ)+1(1+tan2θ)


sin2θ+cos4θ=cos2θ+sin4θ


Write the value of sinθcos(90°-θ)+cosθsin(90°-θ)


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


Prove the following identity : 

secA-1secA+1=1-cosA1+cosA


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


If x = h + a cos θ, y = k + b sin θ. 
Prove that (x-ha)2+(y-kb)2=1.


Prove that:
cos3θ+sin3θcosθ+sinθ+cos3θ-sin3θcosθ-sinθ=2


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Prove the following that:

tan3θ1+tan2θ+cot3θ1+cot2θ = secθ cosecθ – 2 sinθ cosθ


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.