Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
उत्तर
LHS = `(secA - 1)/(secA + 1) = (1/cosA - 1)/(1/cosA + 1)`
= `(1 -cosA)/(1 + cosA) = "RHS"`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If x = a tan θ and y = b sec θ then
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.