Advertisements
Advertisements
प्रश्न
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.
उत्तर
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`
cosec2θ − sec2θ − cot2θ − tan2θ − cos2θ − sin2θ = −3 ...`[because sintheta = 1/(cosectheta), costheta = 1/(sectheta), tantheta = 1/(cottheta)]`
⇒ 1 + cot2θ − 1 − tan2θ − cot2θ − tan2θ − 1 = −3
⇒ − 2 tan2θ − 1 = − 3 ...`[(because 1 + cot^2theta = cosec^2theta), (1 + sec^2theta = tan^2theta), (sin^2theta + cos^2theta = 1)]`
⇒ −2 tan2θ = − 3 + 1
⇒ −2 tan2θ = −2
⇒ tan2θ = 1
⇒ tan θ = 1 ...(Taking square root on both sides)
⇒ tan θ = tan 45°
∴ θ = 45°
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Choose the correct alternative:
sec 60° = ?
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ