हिंदी

Θθθθθcosecθ1sin2θ-1cos2θ-1tan2θ-1cot2θ-1sec2θ-1cosec2θ=-3, then find the value of θ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.

योग

उत्तर

`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`

cosec2θ − sec2θ  − cot2θ  − tan2θ − cos2θ − sin2θ  = −3   ...`[because sintheta = 1/(cosectheta), costheta = 1/(sectheta), tantheta = 1/(cottheta)]`

⇒ 1 + cot2θ − 1 − tan2θ − cot2θ − tan2θ − 1 = −3

⇒ − 2 tan2θ − 1 = − 3   ...`[(because 1 + cot^2theta = cosec^2theta), (1 + sec^2theta = tan^2theta), (sin^2theta + cos^2theta = 1)]`

⇒ −2 tan2θ = − 3 + 1

⇒ −2 tan2θ = −2

⇒ tan2θ = 1

⇒ tan θ = 1   ...(Taking square root on both sides)

⇒ tan θ = tan 45°

∴ θ = 45°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

संबंधित प्रश्न

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


If `sin theta = x , " write the value of cot "theta .`


If `sec theta = x ,"write the value of tan"  theta`.


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×