Advertisements
Advertisements
प्रश्न
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.
उत्तर
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`
cosec2θ − sec2θ − cot2θ − tan2θ − cos2θ − sin2θ = −3 ...`[because sintheta = 1/(cosectheta), costheta = 1/(sectheta), tantheta = 1/(cottheta)]`
⇒ 1 + cot2θ − 1 − tan2θ − cot2θ − tan2θ − 1 = −3
⇒ − 2 tan2θ − 1 = − 3 ...`[(because 1 + cot^2theta = cosec^2theta), (1 + sec^2theta = tan^2theta), (sin^2theta + cos^2theta = 1)]`
⇒ −2 tan2θ = − 3 + 1
⇒ −2 tan2θ = −2
⇒ tan2θ = 1
⇒ tan θ = 1 ...(Taking square root on both sides)
⇒ tan θ = tan 45°
∴ θ = 45°
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `sin theta = x , " write the value of cot "theta .`
If `sec theta = x ,"write the value of tan" theta`.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`