Advertisements
Advertisements
प्रश्न
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
उत्तर
L.H.S = cosec θ – cot θ
= `1/sintheta - costheta/sintheta`
= `(1 -costheta)/sintheta`
= `(1 - costheta)/sintheta xx (1 + costheta)/(1 +costheta)` .....[On rationalising the numerator]
= `(1 - cos^2theta)/(sintheta(1 +costheta))`
= `(sin^2theta)/(sintheta(1 + costheta))` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `sintheta/(1 + costheta)`
= R.H.S
∴ cosec θ – cot θ = `sin theta/(1 + cos theta)`
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If tanθ `= 3/4` then find the value of secθ.
Simplify : 2 sin30 + 3 tan45.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.