हिंदी

Prove that cosec θ – cot θ = sinθ1+cosθ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`

योग

उत्तर

L.H.S = cosec θ – cot θ

= `1/sintheta - costheta/sintheta`

= `(1 -costheta)/sintheta`

= `(1 - costheta)/sintheta xx (1 + costheta)/(1 +costheta)`    .....[On rationalising the numerator]

= `(1 - cos^2theta)/(sintheta(1 +costheta))`

= `(sin^2theta)/(sintheta(1 + costheta))`   .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

= `sintheta/(1 + costheta)`

= R.H.S

∴ cosec θ – cot θ = `sin theta/(1 + cos theta)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If tanθ `= 3/4` then find the value of secθ.


Simplify : 2 sin30 + 3 tan45.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


If cos A + cos2 A = 1, then sin2 A + sin4 A =


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×