Advertisements
Advertisements
प्रश्न
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
उत्तर
LHS = (b - c)(r - p) = `(b - asin^2θ - bcos^2θ)(p sin^2θ + qcos^2θ - p)`
= `[b(1 - cos^2θ) - asin^2θ][p(sin^2θ - 1) + q cos^2θ]`
⇒ LHS = `[(b - a)sin^2θ][(q - p)cos^2θ] = (b - a)(q - p)sin^2θcos^2θ`
RHS = `(c - a)(q- r) = (asin^2θ + bcos^2θ - a)(q - p sin^2θ - qcos^2θ)`
= `[(b - a)cos^2θ][(q - p)sin^2θ] = (b - a)(q - p)sin^2θ.cos^2θ`
Thus , (b - c)(r - p) = (c - a)(q - r)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sec^2 theta-1) cot ^2 theta=1`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.