Advertisements
Advertisements
प्रश्न
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
उत्तर
LHS = (b - c)(r - p) = `(b - asin^2θ - bcos^2θ)(p sin^2θ + qcos^2θ - p)`
= `[b(1 - cos^2θ) - asin^2θ][p(sin^2θ - 1) + q cos^2θ]`
⇒ LHS = `[(b - a)sin^2θ][(q - p)cos^2θ] = (b - a)(q - p)sin^2θcos^2θ`
RHS = `(c - a)(q- r) = (asin^2θ + bcos^2θ - a)(q - p sin^2θ - qcos^2θ)`
= `[(b - a)cos^2θ][(q - p)sin^2θ] = (b - a)(q - p)sin^2θ.cos^2θ`
Thus , (b - c)(r - p) = (c - a)(q - r)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`