Advertisements
Advertisements
प्रश्न
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
उत्तर
L.H.S. = `1/(cosA + sinA - 1) + 1/(cosA + sinA + 1)`
= `(cosA + sinA + 1 + cosA + sinA - 1)/((cosA + sinA)^2 - 1)`
= `(2(cosA + sinA))/(cos^2A + sin^2A + 2cosAsinA - 1)`
= `(2(cosA + sinA))/(1 + 2cosAsinA - 1)`
= `(cosA + sinA)/(cosAsinA)`
= `cosA/(cosAsinA) + sinA/(cosAsinA)`
= `1/sinA + 1/cosA`
= cosec A + sec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.