मराठी

`(sec^2 theta -1)(cosec^2 theta - 1)=1` - Mathematics

Advertisements
Advertisements

प्रश्न

`(sec^2 theta -1)(cosec^2 theta - 1)=1`

उत्तर

LHS = `(sec^2 theta -1)(cosec^2 theta-1)`

       =`tan^2 theta xx cot^2 theta  ( ∵ sec^2 theta - tan^2 theta = 1 and cosec^2 theta - cot^2 theta =1)`

      =` tan^2 theta xx1/(cos^2theta)`

     =1

      =RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 2.2

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If x = a tan θ and y = b sec θ then


Choose the correct alternative:

sec 60° = ?


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×