Advertisements
Advertisements
प्रश्न
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
उत्तर
LHS = `(sec^2 theta -1)(cosec^2 theta-1)`
=`tan^2 theta xx cot^2 theta ( ∵ sec^2 theta - tan^2 theta = 1 and cosec^2 theta - cot^2 theta =1)`
=` tan^2 theta xx1/(cos^2theta)`
=1
=RHS
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Choose the correct alternative:
Which is not correct formula?
Eliminate θ if x = r cosθ and y = r sinθ.
(1 – cos2 A) is equal to ______.