Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
उत्तर १
L.H.S. = `1/(secA + tanA)`
= `1/(1/cosA + sinA/cosA)`
= `1/((1 + sinA)/cosA)`
= `cosA/(1 + sinA) xx (1 - sinA)/(1 + sinA)`
= `(cosA(1 - sinA))/((1)^2 - sin^2A)`
= `(cosA(1 - sinA))/cos^2A`
= `1/cosA - sinA/cosA`
= sec A – tan A
L.H.S. = R.H.S.
Hence proved.
उत्तर २
L.H.S = `1/(secA + tanA)`
= `((secA - tanA))/((secA + tanA)(secA - tanA))` ...((Multiply Num. and Deno. by sec A – tan A)
= `(secA - tanA)/(sec^2A - tan^2A)`
= `(secA - tanA)/1` ...[∵ sec2 A – tan2 A = 1]
= sec A – tan A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A