Advertisements
Advertisements
प्रश्न
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
उत्तर
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
L.H.S = [(sin θ + sec θ)2 + (cos θ + cosec θ)2]
= [sin2 θ + sec2 θ + 2 sin θ sec θ + cos2 θ + cosec2 θ + 2 cos θ cosec θ]
= (sin2 θ + cos2 θ) + (sec2 θ + cosec2 θ) + 2 (sin θ sec θ + cos θ cosec θ)
= `1 + sec^2 theta + "cosec"^2 theta + 2[sin theta xx 1/cos theta + cos theta xx 1/sin theta]`
= `1 + sec^2 theta + "cosec"^2 theta + 2 [(sin^2 theta + cos^2 theta)/(sintheta cos theta)]`
= `1 + sec^2 theta + "cosec"^2 theta + 2 xx 1/(sintheta costheta)`
= 1 + sec2 θ + cosec2 θ + 2 sec θ cosec θ
= 1 + (sec θ + cosec θ)2
L.H.S = R.H.S
∴ (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
APPEARS IN
संबंधित प्रश्न
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
If tanθ `= 3/4` then find the value of secθ.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.