Advertisements
Advertisements
प्रश्न
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
उत्तर
L.H.S = sec4 θ (1 – sin4 θ) – 2 tan2 θ
= `1/cos^4 theta [1 - (sin^2 theta)^2]- 2 xx (sin^2 theta)/(cos^2 theta)`
= `1/(cos^4 theta) (1 + sin^2 theta) (1 - sin^2 theta) - 2 (sin^2 theta)/(cos^2 theta)`
= `1/(cos^4 theta) xx cos^2 theta (1 + sin^2 theta) - 2 (sin^2 theta)/(cos^2 theta)`
= `(1 + sin^2 theta)/(cos^2 theta) - (2sin^2 theta)/(cos^2 theta)`
= `(1 + sin^2 theta - 2sin^2 theta)/(cos^2 theta)`
= `(1 - sin^2 theta)/(cos^2 theta)`
= `(cos^2 theta)/(cos^2 theta)`
L.H.S = R.H.S
∴ sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Choose the correct alternative:
cos 45° = ?