Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
उत्तर
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA))`
= `((sec^2A - tan^2A) + (secA - tanA)^2)/(cosecA(secA - tanA))`
= `((secA - tanA)(secA + tanA) + (secA + tanA)^2)/(cosecA(secA - tanA))`
= `((secA + tanA) + (secA - tanA))/(cosecA)`
= `(2secA)/(cosecA)`
= `2(1/cosA)/(1/sinA)`
= 2 tanA
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If sec θ = `25/7`, then find the value of tan θ.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to