Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
उत्तर
L.H.S = `cot^2 A cosec^2B - cot^2 B cosec^2 A`
`= cot^2 A(1+ cot^2 B) - cot^2 B(1 + cot^2 A)` (∵ `1 + cot^2 theta = cosec^2 theta`)
`= cot^2 A + cot^2 A cot^2 B - cot^2 B cot^2 A`
`= cot^2 A - cot^2 B`
Hence proved
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Find the value of sin 30° + cos 60°.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.