हिंदी

Prove the Following Trigonometric Identities. Cot^2 a Cosec^2b - Cot^2 B Cosec^2 a = Cot^2 a - Cot^2 B - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`

उत्तर

L.H.S = `cot^2 A cosec^2B - cot^2 B cosec^2 A`

`= cot^2 A(1+ cot^2 B) - cot^2   B(1 + cot^2 A)`    (∵ `1 + cot^2 theta = cosec^2 theta`)

`= cot^2 A + cot^2 A cot^2 B - cot^2 B cot^2 A`

`= cot^2 A - cot^2 B`

Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 72 | पृष्ठ ४६

संबंधित प्रश्न

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Find the value of sin 30° + cos 60°.


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×