Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
उत्तर
L.H.S = `cot^2 A cosec^2B - cot^2 B cosec^2 A`
`= cot^2 A(1+ cot^2 B) - cot^2 B(1 + cot^2 A)` (∵ `1 + cot^2 theta = cosec^2 theta`)
`= cot^2 A + cot^2 A cot^2 B - cot^2 B cot^2 A`
`= cot^2 A - cot^2 B`
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.