मराठी

Prove the Following Trigonometric Identities. Cot^2 a Cosec^2b - Cot^2 B Cosec^2 a = Cot^2 a - Cot^2 B - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`

उत्तर

L.H.S = `cot^2 A cosec^2B - cot^2 B cosec^2 A`

`= cot^2 A(1+ cot^2 B) - cot^2   B(1 + cot^2 A)`    (∵ `1 + cot^2 theta = cosec^2 theta`)

`= cot^2 A + cot^2 A cot^2 B - cot^2 B cot^2 A`

`= cot^2 A - cot^2 B`

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 72 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Choose the correct alternative:

1 + tan2 θ = ?


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×