Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
उत्तर
We have to prove `(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
So,
`(cos A cosec A - sin A sec A)/(cos A + sin A) = (cos A 1/sin A - sin A 1/cos A)/(cos A + sin A)`
`= ((cos^2 A - sin^2 A)/(sin A cos A))/(cos A + sin A)`
`= (cos^2 A - sin^2 A)/(sin A cos A(cos A + sin A))`
`= ((cos A - sin A)(cos A + sin A))/(sin A cos A(cos A + sin A))`
`= (cos A - sin A)/(sin A cos A)`
`= cos A/(sin A cos A) - sin A/(sin A cos A)``
`= 1/sin A - 1/cos A``
`= cosec A - sec A`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Choose the correct alternative:
sec2θ – tan2θ =?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.