Advertisements
Advertisements
प्रश्न
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
उत्तर
L.H.S = cot2θ – tan2θ
= (cosec2θ − 1) − (sec2θ − 1) ......`[(because tan^2theta = sec^2theta - 1),(cot^2theta = "cosec"^2 theta - 1)]`
= cosec2θ − 1 − sec2θ + 1
= cosec2θ − sec2θ
= R.H.S
∴ cot2θ – tan2θ = cosec2θ – sec2θ
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If tan θ × A = sin θ, then A = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sin A = `1/2`, then the value of sec A is ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ