Advertisements
Advertisements
प्रश्न
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
उत्तर
(sec θ + tan θ) (1 – sin θ) = cos θ
L.H.S. (sec θ + tan θ) (1 – sin θ)
= `(1/cosθ + sinθ/cosθ)(1 - sinθ)`
= `((1 + sinθ)(1 - sinθ))/cosθ`
= `(1 - sin^2θ)/cosθ`
= `(sin^2θ + cos^2θ - sin^2θ)/cosθ`
= `cos^2θ/cosθ`
= cos θ
= R.H.S.
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If `secθ = 25/7 ` then find tanθ.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
If tan θ = `x/y`, then cos θ is equal to ______.