मराठी

P If Sin θ = 1 3 Then Find the Value of 9tan2 θ + 9. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 

बेरीज

उत्तर

Given: 

`cos θ=3/4` 

⇒ `1/cosec θ=4/3` 

⇒` sec θ=4/3` 

We know that, 

`sec^2θ-tan ^2 θ=1` 

⇒` (4/3)^2-tan ^2 θ=1` 

⇒` tan^2 θ=16/9-1` 

⇒` tan^2 θ=7/9` 

Therefore, 

`9 tan ^2 θ+9=9xx7/9+9`

`= 7+9` 

`=16`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 18 | पृष्ठ ५५

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If `sec theta = x ,"write the value of tan"  theta`.


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


If sec θ = `25/7`, then find the value of tan θ.


If sin θ = `1/2`, then find the value of θ. 


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×