Advertisements
Advertisements
प्रश्न
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
उत्तर
Given:
`cos θ=3/4`
⇒ `1/cosec θ=4/3`
⇒` sec θ=4/3`
We know that,
`sec^2θ-tan ^2 θ=1`
⇒` (4/3)^2-tan ^2 θ=1`
⇒` tan^2 θ=16/9-1`
⇒` tan^2 θ=7/9`
Therefore,
`9 tan ^2 θ+9=9xx7/9+9`
`= 7+9`
`=16`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `sec theta = x ,"write the value of tan" theta`.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
If sec θ = `25/7`, then find the value of tan θ.
If sin θ = `1/2`, then find the value of θ.
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
(1 + sin A)(1 – sin A) is equal to ______.