Advertisements
Advertisements
प्रश्न
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
उत्तर
LHS= `(1+tan^2theta)(1+cot^2 theta)`
=`sec^2 theta. cosec^2 theta (∵ sec^2 theta - tan^2 theta=1 and cosec^2 - cot^2 theta =1)`
=`1/(cos^2 theta. sin^theta)`
=` 1/((1-sin^2 theta ) sin^2 theta`
=`1/(sin^2theta-sin^4theta)`
==RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Choose the correct alternative:
sec2θ – tan2θ =?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
(1 + sin A)(1 – sin A) is equal to ______.