Advertisements
Advertisements
प्रश्न
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
उत्तर
Consider `(m^2 - n^2) = (tanA + sinA)^2 - (tanA - sinA)^2`
⇒ [tanA + sinA - (tanA - sinA)] [tanA + sinA + (tanA - sinA)]
⇒ [2sinA][2tanA] = 4sinAtanA
Now LHS = `(m^2 - n^2)^2 = (4sinAtanA)^2 = 16sin^2Atan^2A`
Also , RHS = 16mn = 16(tanA + sinA)(tanA - sinA)
⇒ RHS = 16mn = `16(tan^2A - sin^2A) = 16(sin^2A/cos^2A - sin^2A)`
⇒ `16sin^2A((1 - cos^2A)/cos^2A) = 16sin^2A(sin^2A/cos^2A) = 16sin^2Atan^2A`
Thus , `(m^2 - n^2)^2` = 16mn
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If cosθ = `5/13`, then find sinθ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1