Advertisements
Advertisements
प्रश्न
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
उत्तर
Consider `(m^2 - n^2) = (tanA + sinA)^2 - (tanA - sinA)^2`
⇒ [tanA + sinA - (tanA - sinA)] [tanA + sinA + (tanA - sinA)]
⇒ [2sinA][2tanA] = 4sinAtanA
Now LHS = `(m^2 - n^2)^2 = (4sinAtanA)^2 = 16sin^2Atan^2A`
Also , RHS = 16mn = 16(tanA + sinA)(tanA - sinA)
⇒ RHS = 16mn = `16(tan^2A - sin^2A) = 16(sin^2A/cos^2A - sin^2A)`
⇒ `16sin^2A((1 - cos^2A)/cos^2A) = 16sin^2A(sin^2A/cos^2A) = 16sin^2Atan^2A`
Thus , `(m^2 - n^2)^2` = 16mn
APPEARS IN
संबंधित प्रश्न
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If sec θ + tan θ = x, then sec θ =
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If sec θ = `25/7`, then find the value of tan θ.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.