Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
उत्तर
LHS = `(secA - 1)/(secA + 1)`
= `(1/cosA - 1)/(1/cosA + 1) = (1 - cosA)/(1 + cosA)`
= `(1 - cosA)/(1 + cosA) xx (1 + cosA)/(1 + cosA)`
= `(1-cos^2A)/(1 + cosA)^2`
= `sin^2A/(1 + cosA)^2` (∵ `1 - cos^2A = sin^2A`)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If sin θ = `1/2`, then find the value of θ.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If 2sin2θ – cos2θ = 2, then find the value of θ.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
(1 + sin A)(1 – sin A) is equal to ______.