Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
उत्तर
We need to prove `(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Here, we will first solve the LHS.
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta`, we get
`(sec A - tan A)/(sec A + tan A) = (1/cos A - sin A/cos A)/(1/cos A + sin A/cos A)`
`= ((1 - sin A)/cos A)/((1 + sin A)/cos A)`
`= (1 - sin A)/(1 + sin A)`
Further, multiplying both numerator and denominator by 1 + sin A we get
`(1 - sin A)/(1 + sin A) = ((1 - sin A)/(1 + sin A))((1 + sin A)/(1 = sin A))`
`= ((1 -sin A)(1 + sin A))/(1 + sin A)^2`
`= (1 s sin^2 A)/(1 + sin A)^2`
Now, using the property `cos^2 theta + sin^2 theta = 1`, we get
So,
`(1 - sin^2 A)/(1 + sin A)^2 = cos^2 A/(1 + sin A)^2` = RHS.
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin^2 theta + 1/((1+tan^2 theta))=1`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `sec theta + tan theta = x," find the value of " sec theta`
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A