हिंदी

Prove the Following Trigonometric Identities. (Sec a - Tan A)/(Sec a + Tan A) = (Cos^2 A)/(1 + Sin A)^2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`

उत्तर

We need to prove  `(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`

Here, we will first solve the LHS.

Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta`, we get

`(sec A - tan A)/(sec A + tan A) = (1/cos A - sin A/cos A)/(1/cos A + sin A/cos A)`

`= ((1 - sin A)/cos A)/((1 + sin A)/cos A)`

`= (1 - sin A)/(1 + sin A)`

Further, multiplying both numerator and denominator by 1 + sin A we get

`(1 - sin A)/(1 + sin A) = ((1 - sin A)/(1 + sin A))((1 + sin A)/(1 =  sin A))`

`= ((1 -sin A)(1 + sin A))/(1 + sin A)^2`

`= (1 s sin^2 A)/(1 + sin A)^2`

Now, using the property `cos^2 theta + sin^2 theta = 1`, we get

So,

`(1 - sin^2 A)/(1 + sin A)^2  = cos^2 A/(1 + sin A)^2`  = RHS.

Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 35 | पृष्ठ ४४

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`sin^2 theta + 1/((1+tan^2 theta))=1`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


If `sec theta + tan theta = x,"  find the value of " sec theta`


cos4 A − sin4 A is equal to ______.


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×