Advertisements
Advertisements
प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
उत्तर
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
Using the identity cosec2A = 1 + cot2A,
L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`
= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`
= `(cotA-1+cosec A)/(cotA+1-cosec A)`
= `({(cotA)-(1-cosec A)}{(cotA)-(1-cosec A)})/({(cotA)+(1-cosec A)}{(cotA)-(1-cosec A)})`
= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`
= `(cot^2A+1+cosec^2A-2cotA-2cosec A+2cotAcosec A)/(cot^2A-(1+cosec^2 A-2cosec A))`
= `(2cosec^2 A+2cotAcosec A-2cotA-2cosec A)/(cot^2A-1-1cosec^2 A+2cosec A)`
= `(2cosec A(cosecA+cotA)-2(cotA+cosec A))/(cot^2A-cosec^2A-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(-1-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(2cosec A-2)`
= cosec A + cot A
= R.H.S
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Write the value of cos1° cos 2°........cos180° .
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If cosθ = `5/13`, then find sinθ.
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
cos θ. sec θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?