हिंदी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: cosA-sinA+1cosA+sinA-1=cosecA+cotA using the identity cosec2 A = 1 cot2 A. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.

योग

उत्तर

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`

Using the identity cosec2A = 1 + cot2A,

L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`

= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`

= `(cotA-1+cosec  A)/(cotA+1-cosec  A)`

= `({(cotA)-(1-cosec  A)}{(cotA)-(1-cosec  A)})/({(cotA)+(1-cosec  A)}{(cotA)-(1-cosec  A)})`

= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`

= `(cot^2A+1+cosec^2A-2cotA-2cosec  A+2cotAcosec  A)/(cot^2A-(1+cosec^2  A-2cosec  A))`

= `(2cosec^2  A+2cotAcosec  A-2cotA-2cosec  A)/(cot^2A-1-1cosec^2  A+2cosec  A)`

= `(2cosec  A(cosecA+cotA)-2(cotA+cosec  A))/(cot^2A-cosec^2A-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(-1-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(2cosec  A-2)`

= cosec A + cot A

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.05 | पृष्ठ १९४

संबंधित प्रश्न

If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


Write the value of cos1° cos 2°........cos180° .


If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


If cosθ = `5/13`, then find sinθ. 


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Choose the correct alternative:

cos θ. sec θ = ?


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Given that sin θ = `a/b`, then cos θ is equal to ______.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×