Advertisements
Advertisements
प्रश्न
If cosθ = `5/13`, then find sinθ.
उत्तर
cosθ = `5/13`
`sin^2θ + cos^2θ = 1`
`sin^2θ + (5/13)^2 = 1`
`sin^2θ = (1 - 25)/169`
`sin^2θ = (169 - 25)/169`
`sin^2θ = 144/169`
sinθ = `sqrt(144/169)`
sinθ = `12/13`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `sin theta = x , " write the value of cot "theta .`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`