Advertisements
Advertisements
प्रश्न
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`
उत्तर
sin3θ + cos3θ
=(sin θ + cos θ)(sin2θ + cos2 – sin θ cos θ)
= (sin θ + cos θ)(1 – sin θ cos θ). ...(i)
L.H.S = `(sin^3θ + cos^3θ)/(sinθ + cosθ) + sinθcosθ`
= `((sinθ + cosθ)(1 - sinθcosθ))/((sinθ + cosθ)) + sinθcosθ` ...(From(i))
= 1 – sin θ cos θ + sin θ + cos θ
= 1
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?