हिंदी

Evaluate (sin^2 63°+sin^2 27°)/(cos^2 17°+cos^2 73°) - Mathematics

Advertisements
Advertisements

प्रश्न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

उत्तर

 

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^@73^@)`

`(= [sin(90^@ - 27^@)]^2+sin^2 27^@)/([cos(90^@ - 73^@)]^2 + cos^2 73^@)`

`= ([cos27^@]^2 + sin^2 27^@)/([sin 73^@]^2 + cos^2 73^@)`

`= (cos^2 27^@ + sin^2 27^@)/(sin^2 73^@+ cos^2 73^@)`

= 1/1 (As sin2A + cos2A = 1)

= 1

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 3.1 | पृष्ठ १९३

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


`(sec^2 theta-1) cot ^2 theta=1`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]


\[\frac{x^2 - 1}{2x}\] is equal to 


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×