Advertisements
Advertisements
प्रश्न
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
उत्तर
LHS = cos θ sin (90° - θ) + sin θ cos (90° - θ)
= cos θ. cos θ + sin θ. sin θ
= cos2θ + sin 2θ
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B