Advertisements
Advertisements
प्रश्न
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
उत्तर
L.H.S = `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")`
= `((1 +sin "B")^2 + cos^2"B")/(cos "B"(1 + sin "B"))`
= `(1 +2sin"B" + sin^2"B" + cos^2"B")/(cos"B"(1 + sin"B"))` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `(1 + 2sin"B" + 1)/(cos"B"(1+ sin"B"))` .....[∵ sin2B + cos2B = 1]
= `(2 + 2sin"B")/(cos"B"(1 + sin"B"))`
= `(2(1 + sin"B"))/(cos"B"(1 + sin"B"))`
= `2/"cos B"`
= 2 sec B
= R.H.S
∴ `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B