Advertisements
Advertisements
प्रश्न
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
उत्तर
L.H.S = sin2A . tan A + cos2A . cot A + 2 sin A . cos A
= `sin^2"A"* (sin "A")/(cos "A") + cos^2"A"* (cos"A")/(sin"A") + 2sin"A" *cos"A"`
= `(sin^3"A")/"cosA" + (cos^3"A")/"sinA" + 2sin"A"*cos"A"`
= `(sin^4"A" + cos^4"A" + 2sin^2"A"cos^2"A")/(sin"A"cos"A")`
= `(sin^2"A" + cos^2"A")^2/(sin"A"cos"A")` .....[∵ a2 + b2 + 2ab = (a + b)2]
= `1^2/(sin"A"cos"A")` ......[∵ sin2A + cos2A = 1]
= `1/(sin"A"cos"A")`
= `(sin^2"A"+ cos^2"A")/(sin"A"cos"A")` ......[∵ 1 = sin2A + cos2A]
= `(sin^2"A")/(sin"A"cos"A") + (cos^2"A")/(sin"A"cos"A")`
= `"sin A"/"cos A" + "cos A"/"sin A"`
= tan A + cot A
= R.H.S
∴ sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
APPEARS IN
संबंधित प्रश्न
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove that:
tan (55° + x) = cot (35° – x)
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Choose the correct alternative:
tan (90 – θ) = ?
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ