Advertisements
Advertisements
प्रश्न
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
विकल्प
1
\[- 1\]
\[\frac{1}{2}\]
\[\frac{1}{4}\]
उत्तर
`bb(1/2)`
Explanation:
It is given that,
\[\sin\theta - \cos\theta = 0\]
\[ \Rightarrow \sin\theta = \cos\theta\]
\[ \Rightarrow \frac{\sin\theta}{\cos\theta} = 1\]
\[ \Rightarrow \tan\theta = 1\]
\[ \Rightarrow \tan\theta = \tan45°\]
\[ \Rightarrow \theta = 45°\]
\[\therefore \sin^4 \theta + \cos^4 \theta\]
\[ = \sin^4 45° + \cos^4 45°\]
\[ = \left( \frac{1}{\sqrt{2}} \right)^4 + \left( \frac{1}{\sqrt{2}} \right)^4 \]
\[ = \frac{1}{4} + \frac{1}{4}\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
If `sec theta = x ,"write the value of tan" theta`.
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
The value of sin2 29° + sin2 61° is
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.