Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
उत्तर १
LHS = (tan θ + sec θ)2 + (tan θ - sec θ)2
`"LHS" = tan^2 θ + sec^2 θ + cancel(2 tan θ. sec θ) + tan^2 θ + sec^2 θ - cancel(2 tan θ. sec θ) ...{(a^2 + b^2 = a^2 + 2ab + b^2),(a^2 - b^2 = a^2 - 2ab + b^2):}`
LHS = `2 tan^2θ + 2 sec^2θ`
LHS = `2[tan^2θ + sec^2θ]`
LHS = `2[sin^2 θ/cos^2 θ + 1/cos^2 θ]`
LHS = `2((sin^2 θ + 1)/cos^2 θ)`
LHS = `2((1 + sin^2 θ)/(1 - sin^2θ)) ...{(sin^2θ + cos^2θ = 1),(∴ cos^2θ = 1 - sin^2θ):}`
RHS = `2((1 + sin^2 θ)/(1 - sin^2θ))`
LHS = RHS
उत्तर २
LHS = `[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 ...{(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)}`
LHS = `2[tan^2θ + 1/cos^2θ]`
LHS = `2[sin^2 θ/cos^2 θ + 1/cos^2 θ]`
LHS = `2((sin^2 θ + 1)/cos^2 θ)`
LHS = `2((1 + sin^2 θ)/(1 - sin^2θ)) ...{(sin^2θ + cos^2θ = 1),(∴ cos^2θ = 1 - sin^2θ):}`
RHS = `2((1 + sin^2 θ)/(1 - sin^2θ))`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
\[\frac{x^2 - 1}{2x}\] is equal to
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
(1 + sin A)(1 – sin A) is equal to ______.