Advertisements
Online Mock Tests
Chapters
2: Polynomials
3: Pair of Linear Equations in Two Variables
4: Quadratic Equations
5: Arithmetic Progression
6: Co-Ordinate Geometry
7: Triangles
8: Circles
9: Constructions
10: Trigonometric Ratios
▶ 11: Trigonometric Identities
12: Trigonometry
13: Areas Related to Circles
14: Surface Areas and Volumes
15: Statistics
16: Probability
![RD Sharma solutions for Mathematics [English] Class 10 chapter 11 - Trigonometric Identities RD Sharma solutions for Mathematics [English] Class 10 chapter 11 - Trigonometric Identities - Shaalaa.com](/images/8193647920-mathematics-english-class-10_6:5809898a5fef45e9a2f7e6b414d392fa.jpg)
Advertisements
Solutions for Chapter 11: Trigonometric Identities
Below listed, you can find solutions for Chapter 11 of CBSE RD Sharma for Mathematics [English] Class 10.
RD Sharma solutions for Mathematics [English] Class 10 11 Trigonometric Identities Exercise 11.1 [Pages 43 - 47]
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
RD Sharma solutions for Mathematics [English] Class 10 11 Trigonometric Identities Exercise 11.2 [Page 54]
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
RD Sharma solutions for Mathematics [English] Class 10 11 Trigonometric Identities Exercise 11.3 [Pages 55 - 56]
Define an identity.
What is the value of (1 − cos2 θ) cosec2 θ?
What is the value of (1 + cot2 θ) sin2 θ?
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Write the value of cosec2 (90° − θ) − tan2 θ.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
What is the value of 9cot2 θ − 9cosec2 θ?
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
True
False
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
RD Sharma solutions for Mathematics [English] Class 10 11 Trigonometric Identities Exercise 11.4 [Pages 56 - 59]
If sec θ + tan θ = x, then sec θ =
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 + 1}{2x}\]
\[\frac{x^2 - 1}{2x}\]
\[\frac{x^2 - 1}{x}\]
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x^2 + 1}{2x}\]
\[\frac{x^2 - 1}{2x}\]
\[\frac{x^2 - 1}{2x}\] is equal to
sec θ + tan θ
sec θ − tan θ
sec2 θ + tan2 θ
sec2 θ − tan2 θ
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
cot θ − cosec θ
cosec θ + cot θ
cosec2 θ + cot2 θ
(cot θ + cosec θ)2
sec4 A − sec2 A is equal to
tan2 A − tan4 A
tan4 A − tan2 A
tan4 A + tan2 A
tan2 A + tan4 A
cos4 A − sin4 A is equal to ______.
2 cos2 A + 1
2 cos2 A − 1
2 sin2 A − 1
2 sin2 A + 1
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
\[\frac{\sin \theta}{1 + \cos \theta}\]
\[\frac{1 - \cos \theta}{\cos \theta}\]
\[\frac{1 - \cos \theta}{\cos \theta}\]
\[\frac{1 - \sin \theta}{\cos \theta}\]
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
0
1
sin θ + cos θ
sin θ − cos θ
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
1
2
4
0
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
2 tan θ
2 sec θ
2 cosec θ
2 tan θ sec θ
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
0
1
−1
None of these
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
a2 b2
ab
a4 b4
a2 + b2
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
ab
a2 − b2
a2 + b2
a2 b2
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
0
1
-1
2
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
0
1
−1
None of these
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
7
12
25
None of these
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
a2 − b2
b2 − a2
a2 + b2
b − a
The value of sin2 29° + sin2 61° is
1
0
2 sin2 29°
2 cos2 61°
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
\[x^2 + y^2 + z^2 = r^2\]
\[x^2 + y^2 - z^2 = r^2\]
\[x^2 - y^2 + z^2 = r^2\]
\[z^2 + y^2 - x^2 = r^2\]
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
−1
1
0
None of these
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
m2 − n2
m2n2
n2 − m2
m2 + n2
If cos A + cos2 A = 1, then sin2 A + sin4 A =
−1
0
1
None of these
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
\[\frac{z^2}{c^2}\]
\[1 - \frac{z^2}{c^2}\]
\[\frac{z^2}{c^2} - 1\]
\[1 + \frac{z^2}{c^2}\]
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
\[\pm \sqrt{a^2 + b^2 + c^2}\]
\[\pm \sqrt{a^2 + b^2 - c^2}\]
\[\pm \sqrt{c^2 - a^2 - b^2}\]
None of these
9 sec2 A − 9 tan2 A is equal to
1
9
8
0
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
0
1
2
-1
none of these
(sec A + tan A) (1 − sin A) = ______.
sec A
sin A
cosec A
cos A
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
sec2 A
−1
cot2 A
tan2 A
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
1
\[- 1\]
\[\frac{1}{2}\]
\[\frac{1}{4}\]
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
2 cos \[\theta\]
0
2 sin \[\theta\]
1
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
0
1
`1/2`
`sqrt(3)/2`
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Solutions for 11: Trigonometric Identities
![RD Sharma solutions for Mathematics [English] Class 10 chapter 11 - Trigonometric Identities RD Sharma solutions for Mathematics [English] Class 10 chapter 11 - Trigonometric Identities - Shaalaa.com](/images/8193647920-mathematics-english-class-10_6:5809898a5fef45e9a2f7e6b414d392fa.jpg)
RD Sharma solutions for Mathematics [English] Class 10 chapter 11 - Trigonometric Identities
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 10 CBSE 11 (Trigonometric Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 10 chapter 11 Trigonometric Identities are Trigonometry Ratio of Zero Degree and Negative Angles, Trigonometric Ratios in Terms of Coordinates of Point, Angles in Standard Position, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Trigonometric Table, Heights and Distances, Trigonometric Ratios, Application of Trigonometry, Trigonometric Ratios of Complementary Angles, Trigonometric Identities.
Using RD Sharma Mathematics [English] Class 10 solutions Trigonometric Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 11, Trigonometric Identities Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.