Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
उत्तर
We have to prove (cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
We know that `sin^2 A + cos^2 A = 1`
So
(cosec A - sin A)(sec A - cos A)(tan A + cot A)
`= (1/sin A - sin A)(1/cos A - cos A)(sin A/cos A + cos A/sin A)`
`= ((1 - sin^2 A)/sin A) ((1 - cos^2 A)/cos A) (sin^2 A + cos^2 A)/(sin A cos A)`
`= ((cos^2 A)/sin A) ((sin^2 A)/cos A) (1/(sin A cos A))`
`(= sin^2 A cos^2 A)/(sin^2 A cos^2 A)`
= 1
APPEARS IN
संबंधित प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
In the following figure the value of cos ϕ is
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
If sec A + tan A = x, then sec A = ______.