Advertisements
Advertisements
प्रश्न
Use tables to find cosine of 9° 23’ + 15° 54’
उत्तर
cos (9° 23’ + 15° 54’) = cos 24° 77’
= cos 25° 17’
= cos (25° 12’ + 5’)
= 0.9048 − 0.0006
= 0.9042
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
If sec A + tan A = x, then sec A = ______.