Advertisements
Advertisements
प्रश्न
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
उत्तर
Given in question: `Cosθ=2/3`
We have to find `sec θ-1/sec θ+1`
⇒ `(sec θ-1)/(sec θ+1)= (1/cos θ-1)/(1/cosθ+1)`
⇒ `(sec θ-1)/(sec θ+1)=(3/2-1)/(3/2+1)`
⇒`(sec θ-1)/(sec θ+1)=(1/2 )/ (5/2)`
⇒`(sec θ-1)/(sec θ+1)=1/5`
Hence the value of `(sec θ-1)/(sec θ+1)` is` 1/5`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
solve.
sec2 18° - cot2 72°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find sine of 34° 42'
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Write the maximum and minimum values of cos θ.
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is