Advertisements
Advertisements
प्रश्न
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
उत्तर
Given in question: `Cosθ=2/3`
We have to find `sec θ-1/sec θ+1`
⇒ `(sec θ-1)/(sec θ+1)= (1/cos θ-1)/(1/cosθ+1)`
⇒ `(sec θ-1)/(sec θ+1)=(3/2-1)/(3/2+1)`
⇒`(sec θ-1)/(sec θ+1)=(1/2 )/ (5/2)`
⇒`(sec θ-1)/(sec θ+1)=1/5`
Hence the value of `(sec θ-1)/(sec θ+1)` is` 1/5`
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find sine of 47° 32'
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
If tan θ = cot 37°, then the value of θ is
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
The value of tan 1° tan 2° tan 3°…. tan 89° is
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.