मराठी

P If Cos θ = 2 3 Find the Value of Sec θ − 1 Sec θ + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]

एका वाक्यात उत्तर

उत्तर

Given in question:  `Cosθ=2/3` 

We have to find `sec θ-1/sec θ+1` 

⇒ `(sec θ-1)/(sec θ+1)= (1/cos θ-1)/(1/cosθ+1)` 

⇒ `(sec θ-1)/(sec θ+1)=(3/2-1)/(3/2+1)` 

⇒`(sec θ-1)/(sec θ+1)=(1/2 )/ (5/2)` 

⇒`(sec θ-1)/(sec θ+1)=1/5`

Hence the value of `(sec θ-1)/(sec θ+1)` is` 1/5`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.4 | Q 6 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`


if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Use tables to find sine of 47° 32'


Use tables to find cosine of 65° 41’


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


If tan θ = cot 37°, then the value of θ is


The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is


The value of tan 1° tan 2° tan 3°…. tan 89° is


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×