Advertisements
Advertisements
प्रश्न
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
उत्तर
We have:
`3 cot θ=4`
`cotθ= 4/3`
Since we know that in right angle triangle
`cot θ=" Base"/"Perpendicular"`
`cot θ=" Base"/ "Hypotenuse"`
`sinθ = "Prependicular"/ "Hypotenuse" `
`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
`"Hypotenuse"=sqrt((3)^2+(4)^2)`
`"Hypotenuse"=sqrt25`
`"Hypotenuse"=5`
Now, we find `(4 cosθ- sin θ)/(2 cos θ+sin θ)`
⇒ `(4 cosθ- sin θ)/(2 cos θ+sin θ)=(4xx 4/5-3/5)/(2xx4/5+3/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) (16/5-3/5)/(8/5+3/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ)=``(13/5)/(11/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) = 13/11`
Hence the value of `(4 cosθ- sinθ)/(2 cos θ+sin θ) "is" 13/11`
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate `(sin 18^@)/(cos 72^@)`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
tan(55° - A) - cot(35° + A)
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 21°
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If sin 3A = cos 6A, then ∠A = ?
If x and y are complementary angles, then ______.