मराठी

If C O S E C 2 θ − Sec 2 θ C O S E C 2 θ + Sec 2 θ Write the Value of 1 − Cos 2 θ 2 − Sin 2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 

बेरीज

उत्तर

Given:  `cot θ=1/sqrt3` 

`"Base"/"Perpendicular"=1/sqrt3`

`"Base"=1` 

`"Perpendicular"=sqrt3`

`"Hypotenuse"= sqrt(("Perpendicular")^2+(Base)^2)` 

`"Hypotenuse"=2` 

Now we find, `(1-cos^2 θ)/(2- sin^2 θ)` 

= `(1- ("Base")^2/("hypotenuse")^2)/ (2-("Perpendicular")^2/("hypotenuse")^2)`

=`(1-(1)^2/(2)^2)/(2-(sqrt3)^2/(2)^2)` 

=`(1-1/4)/(2-3/4)`

=`3/5` 

Hence the value of `(1-cos^2θ)/(2-sin^2θ)` is `3/5`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.4 | Q 9 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


Write the value of tan 10° tan 15° tan 75° tan 80°?


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×