Advertisements
Advertisements
प्रश्न
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
उत्तर
`sintheta=7/25`
we know `sin theta="Opposite"/"Hypotunes"=p/h`
`therefore p/h=7/25` [∵ Opposite = Perpendicular = p]
p=7k, h=25k
Let the adjacent (base) side be b.
Thus `b=sqrt((25k)^2-(7k)^2)=24k`
`costheta=(24k)/(25k)=24/25`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
sin (28° + A) = cos (62° – A)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If the angle θ = –45° , find the value of tan θ.
Write the maximum and minimum values of sin θ.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 3 cos θ = 5 sin θ, then the value of
The value of cos2 17° − sin2 73° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
If x and y are complementary angles, then ______.