Advertisements
Advertisements
प्रश्न
If the angle θ = -60° , find the value of sinθ .
उत्तर
We know that, for any angle θ ,sin(-θ) = -sinθ
`thereforesin(-60^@)=-sin60^@=-sqrt3/2`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
solve.
sec2 18° - cot2 72°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Use tables to find cosine of 9° 23’ + 15° 54’
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
The value of cos2 17° − sin2 73° is
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Find the value of the following:
sin 21° 21′
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A