Advertisements
Advertisements
प्रश्न
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
उत्तर
`(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
= `cos(90° - 35°)/(sin 35°) + cot(90° - 55°)/(tan 55°)`
= `(sin 35°)/(sin 35°) + (tan 55°)/(tan 55°)`
= 1 + 1
= 2
APPEARS IN
संबंधित प्रश्न
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If cot( 90 – A ) = 1, then ∠A = ?