Advertisements
Advertisements
प्रश्न
If cot( 90 – A ) = 1, then ∠A = ?
उत्तर
cot(90 – A) = 1 .....[Given]
∴ tan A = 1
∴ A = 45° .....[∵ tan 45° = 1]
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
sec (70° – θ) = cosec (20° + θ)
If the angle θ = –45° , find the value of tan θ.
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of
Sin 2A = 2 sin A is true when A =
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
The value of the expression (cos2 23° – sin2 67°) is positive.