Advertisements
Advertisements
प्रश्न
If cot( 90 – A ) = 1, then ∠A = ?
उत्तर
cot(90 – A) = 1 .....[Given]
∴ tan A = 1
∴ A = 45° .....[∵ tan 45° = 1]
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Prove that:
sec (70° – θ) = cosec (20° + θ)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Solve: 2cos2θ + sin θ - 2 = 0.
If tan θ = cot 37°, then the value of θ is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.