Advertisements
Advertisements
प्रश्न
Prove that:
sec (70° – θ) = cosec (20° + θ)
उत्तर
sec (70° – θ) = sec [90° – (20° + θ)] = cosec (20° + θ)
APPEARS IN
संबंधित प्रश्न
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
`tan 47^circ/cot 43^circ` = 1